skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fu, Xiaoyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carreira, Erick (Ed.)
    Thehydrogenoxidationreaction(HOR)inalkalineelectrolytesexhibitsmarkedlyslowerkineticsthanthatinacidic electrolytes.Thisposesacriticalchallengeforalkalineexchangemembranefuelcells(AEMFCs).Theslowerkineticsinalkaline electrolytesisoftenattributedtothemoresluggishVolmerstep(hydrogendesorption).IthasbeenshownthatthealkalineHOR activityonthePtsurfacecanbeconsiderablyenhancedbythepresenceofoxophilictransitionmetals(TMs)andsurface-adsorbed hydroxylgroupsonTMs(TM−OHad),althoughtheexactroleofTM−OHadremainsatopicofactivedebates.Herein,usingsingle- atomRh-tailoredPtnanowiresasamodelsystem,wedemonstratethathydroxylgroupsadsorbedontheRhsites(Rh−OHad)can profoundly reorganize the Pt surface water structure to deliver a record-setting alkaline HOR performance. In situ surface characterizations,togetherwiththeoreticalstudies,revealthatsurfaceRh−OHadcouldpromotetheoxygen-downwater(H2O↓)that favorsmorehydrogenbondwithPtsurfaceadsorbedhydrogen(H2O↓···Had-Pt)thanthehydrogen-downwater(OH2↓).TheH2O↓ furtherservesasthebridgetofacilitatetheformationofanenergeticallyfavorablesix-membered-ringtransitionstructurewith neighboringPt−Had andRh−OHad,thusreducingtheVolmerstepactivationenergyandboostingHORkinetics. 
    more » « less
    Free, publicly-accessible full text available April 9, 2026
  2. Ru decorated Ag nanoparticles are designed as highly effective bifunctional electrocatalysts for hydrazine oxidation and hydrogen evolution reactions, enabling a hydrazine assisted water electrolyser with greatly increased current density. 
    more » « less
  3. Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst. 
    more » « less
  4. Abstract Alkaline direct alcohol fuel cells (ADAFCs) represent an attractive alternative to hydrogen fuel cells for the more convenient storage, transportation, and lower cost of alcohols (e.g., methanol and ethanol) when compared with compressed hydrogen. However, the anode alcohol oxidation reaction (AOR) is generally plagued with high overpotential and sluggish kinetics, and often requires noble metal‐based electrocatalysts to accelerate the reaction kinetics. To this end, the development of efficient AOR electrocatalysts with high mass activity (MA), high durability, high Faradaic efficiency (FE), and low overpotential is central for realizing practical ADAFCs. Here, in this minireview, a brief introduction of the fundamental challenges associated with AOR in alkaline electrolyte, the key performance metrics, and the evaluation protocols for benchmarking AOR electrocatalysts are presented, followed by a summary of the recent advances in the noble‐metal based AOR electrocatalysts (e.g., Pt, Pd, and Rh) with an emphasis on the design criteria for improving the specific activity and electrochemical surface area to ultimately deliver high MA while at the same time ensuring long term durability. The strategies to enhance FE and lower overpotential will also be discussed. Last, it is concluded with a brief perspective on the key challenges and future opportunities. 
    more » « less
  5. Abstract Hydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen. 
    more » « less